Executive Summary |
エグゼクティブサマリー |
The purpose of this report |
本報告書の目的 |
This report synthesises the state of scientific understanding of general-purpose AI – AI that can perform a wide variety of tasks – with a focus on understanding and managing its risks. |
本報告書は、汎用AI(さまざまなタスクを実行できるAI)の科学的理解の現状を、そのリスクの理解とマネジメントに焦点を当てながらまとめたものである。 |
This report summarises the scientific evidence on the safety of general-purpose AI. The purpose of this report is to help create a shared international understanding of risks from advanced AI and how they can be mitigated. To achieve this, this report focuses on general-purpose AI – or AI that can perform a wide variety of tasks – since this type of AI has advanced particularly rapidly in recent years and has been deployed widely by technology companies for a range of consumer and business purposes. The report synthesises the state of scientific understanding of general-purpose AI, with a focus on understanding and managing its risks. |
本報告書は、汎用AIの安全性に関する科学的根拠をまとめたものである。本報告書の目的は、高度なAIがもたらすリスクとその緩和方法について、国際的な共通理解を得ることにある。そのために本報告書では、汎用AI、つまり多種多様なタスクを実行できるAIに焦点を当てている。なぜなら、この種のAIは近年特に急速に進歩しており、テクノロジー企業によって消費者やビジネスのさまざまな目的で広く展開されているからである。本報告書は、汎用AIの科学的理解の現状を、そのリスクの理解とマネジメントに焦点を当てて総括している。 |
Amid rapid advancements, research on general-purpose AI is currently in a time of scientific discovery, and – in many cases – is not yet settled science. The report provides a snapshot of the current scientific understanding of general-purpose AI and its risks. This includes identifying areas of scientific consensus and areas where there are different views or gaps in the current scientific understanding. |
急速な進歩の中で、汎用AIの研究は現在、科学的発見の時期にあり、多くの場合、まだ科学として確立していない。本報告書は、汎用AIとそのリスクに関する現在の科学的理解のスナップショットを提供する。これには、科学的コンセンサスのある分野と、現在の科学的理解に異なる見解やギャップがある分野の特定も含まれる。 |
People around the world will only be able to fully enjoy the potential benefits of general-purpose AI safely if its risks are appropriately managed. This report focuses on identifying those risks and evaluating technical methods for assessing and mitigating them, including ways that general-purpose AI itself can be used to mitigate risks. It does not aim to comprehensively assess all possible societal impacts of general-purpose AI. Most notably, the current and potential future benefits of general-purpose AI – although they are vast – are beyond this report’s scope. Holistic policymaking requires considering both the potential benefits of general-purpose AI and the risks covered in this report. It also requires taking into account that other types of AI have different risk/benefit profiles compared to current general-purpose AI. |
汎用AIのリスクが適切にマネジメントされて初めて、世界中の人々が汎用AIの潜在的な恩恵を安全に十分に享受できるようになる。本報告書は、汎用AIそのものがリスクを緩和するために利用できる方法を含め、そうしたリスクを特定し、それをアセスメントし緩和するための技術的手法を評価することに焦点を当てている。汎用AIの社会的影響の可能性をすべて包括的に評価することを目的としているわけではない。最も注目すべきは、汎用AIの現在および将来の潜在的な利益は、膨大なものではあるが、本報告書の範囲を超えていることである。総合的な政策立案には、汎用AIの潜在的なメリットと、本報告書で取り上げたリスクの両方を考慮する必要がある。また、他の種類のAIは、現在の汎用AIとは異なるリスク/ベネフィット・プロファイルを持つことも考慮する必要がある。 |
The three main sections of the report summarise the scientific evidence on three core questions: What can general-purpose AI do? What are risks associated with general-purpose AI? And what mitigation techniques are there against these risks? |
報告書の3つの主要セクションは、3つの核となる疑問に関する科学的証拠を要約している:汎用AIは何ができるのか? 汎用AIにはどのようなリスクがあるのか?そして、これらのリスクに対してどのような緩和技術があるのか? |
Section 1 – Capabilities of general-purpose AI: What can general-purpose AI do now and in the future? |
第1節 汎用AIの能力:汎用AIは現在、そして将来何ができるのか? |
General purpose AI capabilities have improved rapidly in recent years, and further advancements could be anything from slow to extremely rapid.
|
一般的な-目的別AIの能力は近年急速に向上しており、今後の改善はゆっくりとしたものから極めて急速なものまである。 |
What AI can do is a key contributor to many of the risks it poses, and according to many metrics, general-purpose AI capabilities have been progressing rapidly. Five years ago, the leading general-purpose AI language models could rarely produce a coherent paragraph of text. Today, some general-purpose AI models can engage in conversations on a wide range of topics, write computer programs, or generate realistic short videos from a description. However, it is technically challenging to reliably estimate and describe the capabilities of general-purpose AI. |
AIに何ができるかは、AIがもたらすリスクの多くに重要な寄与をしており、多くの指標によれば、汎用AIの能力は急速に進歩している。5年前、主要な汎用AI言語モデルは、まとまった段落の文章をほとんど作成できなかった。今日、いくつかの汎用AIモデルは、幅広いトピックについて会話したり、コンピューター・プログラムを書いたり、説明からリアルな短い動画を生成したりすることができる。しかし、汎用AIの能力を確実に推定し、説明することは技術的に困難である。 |
AI developers have rapidly improved the capabilities of general-purpose AI in recent years, mostly through ‘scaling’.[1] They have continually increased the resources used for training new models (this is often referred to as ‘scaling’) and refined existing approaches to use those resources more efficiently. For example, according to recent estimates, state-of-the-art AI models have seen annual increases of approximately 4x in computational resources ('compute') used for training and 2.5x in training dataset size. |
AI開発者は近年、汎用AIの能力を急速に改善してきたが、そのほとんどは「スケーリング」によるものだ。[1]新しいモデルの学習に使用するリソースを継続的に増やし(これはしばしば「スケーリング」と呼ばれる)、それらのリソースをより効率的に使用するために既存のアプローチを改良してきた。例えば、最近の推定によると、最先端のAIモデルは、学習に使用される計算リソース(「コンピュート」)が年間約4倍、学習データセットサイズが2.5倍増加している。 |
The pace of future progress in general-purpose AI capabilities has substantial implications for managing emerging risks, but experts disagree on what to expect even in the coming months and years. Experts variously support the possibility of general-purpose AI capabilities advancing slowly, rapidly, or extremely rapidly. |
汎用AI能力の将来的な進歩のペースは、新たなリスクのマネジメントに大きな意味を持つが、今後数カ月から数年の間にも何が予想されるかについては、専門家の間でも意見が分かれている。専門家は、汎用AIの能力がゆっくりと、急速に、あるいは極めて急速に進歩する可能性を様々に支持している。 |
Experts disagree about the pace of future progress because of different views on the promise of further ‘scaling’ – and companies are exploring an additional, new type of scaling that might further accelerate capabilities.† While scaling has often overcome the limitations of previous systems, experts disagree about its potential to resolve the remaining limitations of today’s systems, such as unreliability at acting in the physical world and at executing extended tasks on computers. In recent months, a new type of scaling has shown potential for further improving capabilities: rather than just scaling up the resources used for training models, AI companies are also increasingly interested in ‘inference scaling’ – letting an already trained model use more computation to solve a given problem, for example to improve on its own solution, or to write so-called ‘chains of thought’ that break down the problem into simpler steps. |
専門家の間では、さらなる「スケーリング」の有望性に対する見解の相違から、将来の進歩のペースについて意見が分かれており、企業は能力をさらに加速させる可能性のある、追加の新しいタイプのスケーリングを模索している(†)。スケーリングはしばしば以前のシステムの限界を克服してきたが、専門家の間では、物理的な世界で行動する際の信頼性の低さや、コンピュータ上で長時間のタスクを実行する際の信頼性の低さなど、今日のシステムに残っている限界を解決する可能性については意見が分かれている。ここ数カ月、新しいタイプのスケーリングが能力をさらに向上させる可能性を示している。AI企業は、モデルの学習に使用するリソースを単にスケールアップするだけでなく、「推論スケーリング」にもますます関心を寄せている。これは、すでに学習されたモデルに、与えられた問題を解くためにより多くの計算を使用させるもので、例えば、自身の解法を改善したり、問題をより単純なステップに分解するいわゆる「思考の連鎖」を記述したりすることができる。 |
Several leading companies that develop general-purpose AI are betting on ‘scaling’ to continue leading to performance improvements. If recent trends continue, by the end of 2026 some general-purpose AI models will be trained using roughly 100x more training compute than 2023's most compute-intensive models, growing to 10,000x more training compute by 2030, combined with algorithms that achieve greater capabilities for a given amount of available computation. In addition to this potential scaling of training resources, recent trends such as inference scaling and using models to generate training data could mean that even more compute will be used overall. However, there are potential bottlenecks to further increasing both data and compute rapidly, such as the availability of data, AI chips, capital, and local energy capacity. Companies developing general-purpose AI are working to navigate these potential bottlenecks. |
汎用AIを開発するいくつかの大手企業は、「スケーリング」が性能改善につながり続けることに賭けている。最近のトレンドが続けば、2026年末までに、汎用AIモデルのいくつかは、2023年の最も計算負荷の高いモデルよりもおよそ100倍多い学習用計算量を使用して学習され、2030年までに10,000倍多い学習用計算量を使用するようになり、利用可能な計算量が与えられた場合に、より高い能力を達成するアルゴリズムと組み合わされる。このようなトレーニングリソースのスケーリングの可能性に加え、推論のスケーリングやトレーニングデータを生成するためにモデルを使用するなどの最近のトレンドは、全体としてさらに多くの計算機が使用されることを意味する可能性がある。しかし、データ、AIチップ、資本、地域のエネルギー容量の利用可能性など、データと計算の両方をさらに急速に増加させるには、潜在的なボトルネックがある。汎用AIを開発している企業は、これらの潜在的なボトルネックを回避するために取り組んでいる。 |
Since the publication of the Interim Report (May 2024), general-purpose AI has reached expert-level performance in some tests and competitions for scientific reasoning and programming, and companies have been making large efforts to develop autonomous AI agents. Advances in science and programming have been driven by inference scaling techniques such as writing long ‘chains of thought’. New studies suggest that further scaling such approaches, for instance allowing models to analyse problems by writing even longer chains of thought than today’s models, could lead to further advances in domains where reasoning matters more, such as science, software engineering, and planning. In addition to this trend, companies are making large efforts to develop more advanced general-purpose AI agents, which can plan and act autonomously to work towards a given goal. Finally, the market price of using general-purpose AI of a given capability level has dropped sharply, making this technology more broadly accessible and widely used. |
中間報告発表(2024年5月)以降、汎用AIは科学的推論やプログラミングに関するいくつかのテストやコンテストでエキスパートレベルの性能に達し、企業は自律型AIエージェントの開発に大きく力を入れている。科学とプログラミングの進歩は、長い「思考の連鎖」を書くなどの推論スケーリング技術によって推進されてきた。新たな研究は、このようなアプローチのスケーリングをさらに進め、例えば、 、現在のモデルよりもさらに長い思考の連鎖を書くことによって問題を分析できるようにすれば、科学、ソフトウェア工学、プランニングなど、推論がより重要な領域でさらなる進歩が期待できることを示唆している。このトレンドに加え、企業は、より高度な汎用AIエージェントの開発に大きな努力を払っている。このエージェントは、与えられた目標に向かって自律的に計画を立て、行動することができる。最終的に、ある能力レベルの汎用AIを使用する市場価格は急激に低下し、この技術がより広く利用できるようになり、広く利用されるようになった。 |
This report focuses primarily on technical aspects of AI progress, but how fast general-purpose AI will advance is not a purely technical question. The pace of future advancements will also depend on non-technical factors, potentially including the approaches that governments take to regulating AI. This report does not discuss how different approaches to regulation might affect the speed of development and adoption of general-purpose AI. |
本報告書は主にAIの進歩の技術的側面に焦点を当てているが、汎用AIの進歩の速度は純粋に技術的な問題ではない。将来の進歩のペースは、非技術的な要因にも左右され、政府がAIを規制する際のアプローチも含まれる可能性がある。本報告書では、規制に対するアプローチの違いが、汎用AIの開発・普及のスピードにどのような影響を与えるかについては論じていない。 |
Section 2 – Risks: What are risks associated with general-purpose AI? |
第2節 リスク:汎用AIに伴うリスクとは何か? |
Several harms from general-purpose AI are already well-established. As general-purpose AI becomes more capable, evidence of additional risks is gradually emerging. |
汎用AIによるいくつかの弊害はすでに確立されている。汎用AIの能力が高まるにつれて、新たなリスクの証拠が徐々に明らかになってきている。 |
This report classifies general-purpose AI risks into three categories: malicious use risks; risks from malfunctions; and systemic risks. Each of these categories contains risks that have already materialised as well as risks that might materialise in the next few years. |
本報告書では、汎用AIのリスクを「悪意のある利用リスク」「誤作動によるリスク」「システムリスク」の3カテゴリーに分類している。これらのカテゴリーにはそれぞれ、すでに顕在化しているリスクと、今後数年間に顕在化する可能性のあるリスクが含まれている。 |
Risks from malicious use: malicious actors can use general-purpose AI to cause harm to individuals, organisations, or society. Forms of malicious use include: |
悪意のある利用によるリスク:悪意のある行為者は、汎用AIを利用して個人、組織、社会に危害を加える可能性がある。悪意のある利用の形態には以下のようなものがある: |
Harm to individuals through fake content: Malicious actors can currently use general-purpose AI to generate fake content that harms individuals in a targeted way. These malicious uses include non-consensual 'deepfake' pornography and AI-generated CSAM, financial fraud through voice impersonation, blackmail for extortion, sabotage of personal and professional reputations, and psychological abuse. However, while incident reports of harm from AI-generated fake content are common, reliable statistics on the frequency of these incidents are still lacking. |
偽コンテンツによる個人への被害:悪意ある行為者は現在、生成的AIを利用して、個人を標的に害する偽コンテンツを生成することができる。このような悪意のある利用には、非合意の「ディープフェイク」ポルノやAIが生成したCSAM、音声なりすましによる金銭詐欺、恐喝のための恐喝、個人的・職業的評判の妨害、心理的虐待などが含まれる。しかし、AIが生成的な偽コンテンツによる被害のインシデント報告はよくあるものの、こうしたインシデントの頻度に関する信頼できる統計はまだ不足している。 |
● Manipulation of public opinion: General-purpose AI makes it easier to generate persuasive content at scale. This can help actors who seek to manipulate public opinion, for instance to affect political outcomes. However, evidence on how prevalent and how effective such efforts are remains limited. Technical countermeasures like content watermarking, although useful, can usually be circumvented by moderately sophisticated actors. |
● 世論を操作する:生成的AIによって、説得力のあるコンテンツを大規模に生成することが容易になる。これは、例えば政治的な結果に影響を与えるために世論を操作しようとする行為者を助けることができる。しかし、そのような取り組みがどれほど普及し、どれほど効果的であるかについての証拠はまだ限られている。コンテンツの電子透かしのような技術的な対策は、有用ではあるが、中程度に洗練された行為者であれば通常回避することができる。 |
● Cyber offence: General-purpose AI can make it easier or faster for malicious actors of varying skill levels to conduct cyberattacks. Current systems have demonstrated capabilities in low- and medium-complexity cybersecurity tasks, and state-sponsored actors are actively exploring AI to survey target systems. New research has confirmed that the capabilities of general-purpose AI related to cyber offence are significantly advancing, but it remains unclear whether this will affect the balance between attackers and defenders. |
● サイバー攻撃汎用AIは、さまざまなスキルレベルの悪意ある行為者がサイバー攻撃を行うことを容易に、あるいは迅速にすることができる。現在のシステムは、低・中複雑度のサイバーセキュリティ・タスクで能力を発揮しており、国家的支援を受けた行為者は、標的システムを調査するためのAIを積極的に模索している。新たな研究では、サイバー攻撃に関する汎用AIの能力が著しく進歩していることが確認されているが、これが攻撃側と防御側のバランスに影響を与えるかどうかはまだ不明である。 |
● Biological and chemical attacks: Recent general-purpose AI systems have displayed some ability to provide instructions and troubleshooting guidance for reproducing known biological and chemical weapons and to facilitate the design of novel toxic compounds. In new experiments that tested for the ability to generate plans for producing biological weapons, a general-purpose AI system sometimes performed better than human experts with access to the internet. In response, one AI company increased its assessment of biological risk from its best model from ‘low’ to ‘medium’. However, real-world attempts to develop such weapons still require substantial additional resources and expertise. A comprehensive assessment of biological and chemical risk is difficult because much of the relevant research is classified. |
● 生物・化学兵器による攻撃最近の汎用AIシステムは、既知の生物・化学兵器を再現するための指示やトラブルシューティングのガイダンスを提供したり、新規毒性化合物の設計を容易にしたりする能力をある程度示している。生物兵器を製造するための計画を生成する能力をテストした新しい実験では、生成的AIシステムが、インターネットにアクセスできる人間の専門家よりも優れた結果を出すこともあった。これを受けて、あるAI企業は、最良のモデルによる生物学的リスクのアセスメントを「低」から「中」に引き上げた。しかし、このような兵器を現実の世界で開発しようとする試みには、まだかなりの追加資源と専門知識が必要である。生物学的・化学的リスクの包括的アセスメントは、関連研究の多くが機密扱いであるため困難である。 |
Since the publication of the Interim Report, general-purpose AI has become more capable in domains that are relevant for malicious use. For example, researchers have recently built general-purpose AI systems that were able to find and exploit some cybersecurity vulnerabilities on their own and, with human assistance, discover a previously unknown vulnerability in widely used software. General-purpose AI capabilities related to reasoning and to integrating different types of data, which can aid research on pathogens or in other dual-use fields, have also improved. |
中間報告書の発表以来、汎用AIは悪意のある利用に関連する領域でより高い能力を発揮するようになっている。例えば、研究者たちは最近、サイバーセキュリティの脆弱性を自ら発見して悪用することができる汎用AIシステムを構築し、また、人間の支援を得て、広く使われているソフトウェアのこれまで知られていなかった脆弱性を発見した。推論や、病原体やその他の二次利用分野の研究を助けることができる、さまざまな種類のデータの統合に関連する汎用AIの能力も改善されている。 |
Risks from malfunctions: general-purpose AI can also cause unintended harm. Even when users have no intention to cause harm, serious risks can arise due to the malfunctioning of general-purpose AI. Such malfunctions include: |
誤作動によるリスク:汎用AIは意図しない危害をもたらすこともある。ユーザーに危害を加える意図がない場合でも、汎用AIの誤作動によって深刻なリスクが生じる可能性がある。そのような誤作動には以下のようなものがある: |
● Reliability issues: Current general-purpose AI can be unreliable, which can lead to harm. For example, if users consult a general-purpose AI system for medical or legal advice, the system might generate an answer that contains falsehoods. Users are often not aware of the limitations of an AI product, for example due to limited ‘AI literacy’, misleading advertising, or miscommunication. There are a number of known cases of harm from reliability issues, but still limited evidence on exactly how widespread different forms of this problem are. |
● 信頼性の問題:現在の汎用AIは信頼性が低く、それが弊害につながる可能性がある。例えば、ユーザーが医療や法律に関する助言を求めて汎用AIシステムに相談した場合、システムが虚偽を含む回答を生成する可能性がある。例えば、「AIリテラシー」の低さ、誤解を招くような広告、誤ったコミュニケーションなどが原因で、ユーザーはAI製品の限界を認識していないことが多い。信頼性の問題による危害の事例は数多く知られているが、この問題のさまざまな形態がどの程度広まっているかについては、正確な証拠はまだ限られている。 |
● Bias: General-purpose AI systems can amplify social and political biases, causing concrete harm. They frequently display biases with respect to race, gender, culture, age, disability, political opinion, or other aspects of human identity. This can lead to discriminatory outcomes including unequal resource allocation, reinforcement of stereotypes, and systematic neglect of underrepresented groups or viewpoints. Technical approaches for mitigating bias and discrimination in general-purpose AI systems are advancing, but face trade-offs between bias mitigation and competing objectives such as accuracy and privacy, as well as other challenges. |
● バイアス:汎用AIシステムは、社会的・政治的バイアスを増幅し、具体的な害をもたらす可能性がある。AIシステムは、人種、性別、文化、年齢、障害、政治的意見、あるいは人間のアイデンティティの他の側面に関してバイアスを示すことが多い。これは、不平等な資源配分、固定観念の強化、代表的でないグループや視点の組織的無視など、差別的な結果につながる可能性がある。汎用AIシステムにおけるバイアスと差別を緩和する技術的アプローチは進歩しているが、バイアスの緩和と、精度やプライバシーなど競合する目的との間のトレードオフや、その他の課題に直面している。 |
● Loss of control: ‘Loss of control’ scenarios are hypothetical future scenarios in which one or more general-purpose AI systems come to operate outside of anyone's control, with no clear path to regaining control. There is broad consensus that current general-purpose AI lacks the capabilities to pose this risk. However, expert opinion on the likelihood of loss of control within the next several years varies greatly: some consider it implausible, some consider it likely to occur, and some see it as a modest-likelihood risk that warrants attention due to its high potential severity. Ongoing empirical and mathematical research is gradually advancing these debates. |
● 制御の喪失:「制御の喪失」シナリオとは、1つまたは複数の全般統制AIシステムが、誰の制御も及ばず、制御を取り戻す明確な道筋もないまま動作するようになる仮想的な未来シナリオである。現在の汎用AIには、このようなリスクを引き起こす能力がないことは広くコンセンサスが得られている。しかし、今後数年以内に制御不能になる可能性に関する専門家の意見は大きく異なる。ある者はあり得ないと考え、ある者は発生する可能性が高いと考え、またある者は潜在的な重大性が高いため注意を要する中程度の可能性のリスクと見ている。現在進行中の実証的・数学的研究が、こうした議論を徐々に進展させている。 |
Since the publication of the Interim Report, new research has led to some new insights about risks of bias and loss of control. The evidence of bias in general-purpose AI systems has increased, and recent work has detected additional forms of AI bias. Researchers have observed modest further advancements towards AI capabilities that are likely necessary for commonly discussed loss of control scenarios to occur. These include capabilities for autonomously using computers, programming, gaining unauthorised access to digital systems, and identifying ways to evade human oversight. |
中間報告書の発表以来、新たな研究により、バイアスと制御不能のリスクに関する新たな洞察がいくつか得られている。汎用AIシステムにおけるバイアスの証拠が増加し、最近の研究では、新たな形態のAIバイアスが検知された。研究者たちは、一般的に議論されている制御不能のシナリオが発生するために必要と思われるAIの能力について、さらに緩やかな進歩を観察している。これには、コンピュータを自律的に使用する能力、プログラミング能力、デジタルシステムへの不正アクセス能力、人間の監視を逃れる方法の特定能力などが含まれる。 |
Systemic risks: beyond the risks directly posed by capabilities of individual models, widespread deployment of general-purpose AI is associated with several broader systemic risks. Examples of systemic risks range from potential labour market impacts to privacy risks and environmental effects: |
システミックリスク:個々のモデルの能力が直接もたらすリスクを超えて、汎用AIの広範な展開は、いくつかのより広範なシステミックリスクと関連している。システミックリスクの例は、潜在的な労働市場への影響からプライバシーリスクや環境への影響まで多岐にわたる: |
● Labour market risks: General-purpose AI, especially if it continues to advance rapidly, has the potential to automate a very wide range of tasks, which could have a significant effect on the labour market. This means that many people could lose their current jobs. However, many economists expect that potential job losses could be offset, partly or potentially even completely, by the creation of new jobs and by increased demand in non-automated sectors. |
● 労働市場のリスク:汎用AIは、特にそれが急速に進歩し続ければ、非常に幅広い作業を自動化する可能性を秘めており、労働市場に大きな影響を与える可能性がある。つまり、多くの人々が現在の職を失う可能性がある。しかし、多くのエコノミストは、潜在的な雇用損失は、新たな雇用の創出や非自動化分野での需要増加によって、部分的に、あるいは潜在的に完全に相殺される可能性があると予想している。 |
● Global AI R&D divide: General-purpose AI research and development (R&D) is currently concentrated in a few Western countries and China. This ‘AI divide’ has the potential to increase much of the world’s dependence on this small set of countries. Some experts also expect it to contribute to global inequality. The divide has many causes, including a number of causes that are not unique to AI. However, in significant part it stems from differing levels of access to the very expensive compute needed to develop general-purpose AI: most low- and middle-income countries (LMICs) have significantly less access to compute than high-income countries (HICs). |
● グローバルなAI研究開発格差:汎用AIの研究開発(R&D)は現在、少数の欧米諸国と中国に集中している。この「AI格差」は、世界の多くの国々がこの少数の国々への依存度を高める可能性がある。一部の専門家は、これが世界的な不平等に寄与する可能性もあると予測している。この格差には多くの原因があり、AIに特有ではない原因もいくつかある。しかし、その大きな要因は、汎用AIの開発に必要な非常に高価なコンピューティングへのアクセスレベルの違いから生じている。ほとんどの低・中所得国(LMIC)は、高所得国(HIC)よりもコンピューティングへのアクセスが大幅に少ない。 |
● Market concentration and single points of failure: A small number of companies currently dominate the market for general-purpose AI. This market concentration could make societies more vulnerable to several systemic risks. For instance, if organisations across critical sectors, such as finance or healthcare, all rely on a small number of general-purpose AI systems, then a bug or vulnerability in such a system could cause simultaneous failures and disruptions on a broad scale. |
● 市場の集中と単一障害点:現在、少数の企業が汎用AIの市場を独占している。このような市場の集中は、社会をいくつかのシステミックリスクに対してより脆弱にする可能性がある。例えば、金融や医療など重要なセクターの組織がすべて少数の汎用AIシステムに依存している場合、そのようなシステムにバグや脆弱性があれば、大規模な障害や混乱を同時に引き起こす可能性がある。 |
● Environmental risks: Growing compute use in general-purpose AI development and deployment has rapidly increased the amounts of energy, water, and raw material consumed in building and operating the necessary compute infrastructure. This trend shows no clear indication of slowing, despite progress in techniques that allow compute to be used more efficiently. General-purpose AI also has a number of applications that can either benefit or harm sustainability efforts. |
● 環境リスク:汎用AIの開発・展開におけるコンピュート利用の拡大により、必要なコンピュート・インフラを構築・運用するために消費されるエネルギー、水、原材料の量が急速に増加している。この傾向は、コンピュートのより効率的な利用を可能にする技術の進歩にもかかわらず、減速する明確な兆候は見られない。汎用AIにも、持続可能性への取り組みに有益にも有害にもなりうるアプリケーションが数多くある。 |
● Privacy risks: General-purpose AI can cause or contribute to violations of user privacy. For example, sensitive information that was in the training data can leak unintentionally when a user interacts with the system. In addition, when users share sensitive information with the system, this information can also leak. But general-purpose AI can also facilitate deliberate violations of privacy, for example if malicious actors use AI to infer sensitive information about specific individuals from large amounts of data. However, so far, researchers have not found evidence of widespread privacy violations associated with general-purpose AI. |
● プライバシーリスク:汎用AIは、ユーザーのプライバシー侵害を引き起こしたり、助長したりする可能性がある。例えば、学習データに含まれていた機密情報が、ユーザーがシステムと対話する際に意図せず漏れる可能性がある。さらに、ユーザーが機密情報をシステムと共有した場合、その情報も漏れる可能性がある。しかし、汎用AIは意図的なプライバシー侵害を助長する可能性もある。例えば、悪意のある行為者がAIを使って大量のデータから特定の個人に関する機密情報を推測する場合などだ。しかし、これまでのところ、研究者は汎用AIに関連する広範なプライバシー侵害の証拠を発見していない。 |
● Copyright infringements: General-purpose AI both learns from and creates works of creative expression, challenging traditional systems of data consent, compensation, and control. Data collection and content generation can implicate a variety of data rights laws, which vary across jurisdictions and may be under active litigation. Given the legal uncertainty around data collection practices, AI companies are sharing less information about the data they use. This opacity makes third-party AI safety research harder. |
● 著作権侵害:汎用AIは創造的表現の作品から学習し、また創造的表現の作品を創作し、データ同意、補償、管理に関する従来の制度に挑戦する。データ収集とコンテンツ生成は、様々なデータ権利法に関わる可能性があり、それらは司法管轄区域によって異なり、訴訟も活発に行われている可能性がある。データ収集慣行をめぐる法的不確実性を考慮すると、AI企業は自社が使用するデータに関する情報をあまり共有しないようになっている。この不透明さが、サードパーティによるAIの安全性研究を難しくしている。 |
Since the publication of the Interim Report, additional evidence on the labour market impacts of general-purpose AI has emerged, while new developments have heightened privacy and copyrights concerns. New analyses of labour market data suggest that individuals are adopting general-purpose AI very rapidly relative to previous technologies. The pace of adoption by businesses varies widely by sector. In addition, recent advances in capabilities have led to general-purpose AI being deployed increasingly in sensitive contexts such as healthcare or workplace monitoring, which creates new privacy risks. Finally, as copyright disputes intensify and technical mitigations to copyright infringements remain unreliable, data rights holders have been rapidly restricting access to their data. |
中間報告書の発表以降、汎用AIの労働市場への影響に関する新たな証拠が登場する一方で、新たな進展によりプライバシーや著作権に関する懸念が高まっている。労働市場データの新たな分析によれば、個人が汎用AIを採用するスピードは、従来のテクノロジーと比較して非常に速いことが示唆されている。企業による採用のペースは分野によって大きく異なる。加えて、最近の機能の進歩により、ヘルスケアや職場のモニタリングなど、センシティブな場面での汎用AIの展開が増えており、新たなプライバシーリスクが発生している。最後に、著作権紛争が激化し、著作権侵害に対する技術的緩和が依然として信頼できないため、データ権利者はデータへのアクセスを急速に制限している。 |
Open-weight models: an important factor in evaluating many risks that a general-purpose AI model might pose is how it is released to the public. So-called ‘open-weight models’ are AI models whose central components, called ‘weights’, are shared publicly for download. Open-weight access facilitates research and innovation, including in AI safety, as well as increasing transparency and making it easier for the research community to detect flaws in models. However, open-weight models can also pose risks, for example by facilitating malicious or misguided use that is difficult or impossible for the developer of the model to monitor or mitigate. Once model weights are available for public download, there is no way to implement a wholesale rollback of all existing copies or ensure that all existing copies receive safety updates. Since the Interim Report, high-level consensus has emerged that risks posed by greater AI openness should be evaluated in terms of ‘marginal’ risk: the extent to which releasing an open-weight model would increase or decrease a given risk, relative to risks posed by existing alternatives such as closed models or other technologies. |
オープンウエイトモデル:汎用AIモデルがもたらすであろう多くのリスクを評価する上で重要な要素は、それがどのように一般に公開されているかである。いわゆる「オープンウエイトモデル」とは、「ウエイト」と呼ばれる中心的なコンポーネントがダウンロードできるように公開されているAIモデルのことである。オープンウェイトへのアクセスは、AIの安全性を含む研究とイノベーションを促進し、透明性を高め、研究コミュニティがモデルの欠陥を検出しやすくする。しかし、オープン・ウェイト・モデルは、例えば、モデルの開発者が監視したり緩和したりすることが困難または不可能な悪意ある利用や誤った利用を助長するなどのリスクをもたらす可能性もある。一旦モデルの重みが一般にダウンロードできるようになると、既存の全てのコピーを全面的にロールバックしたり、既存の全てのコピーが安全性の更新を受けることを保証したりする方法はない。中間報告書以降、AIのオープン性を高めることによってもたらされるリスクは、「限界」リスク、すなわち、クローズドモデルや他の技術といった既存の代替案がもたらすリスクと比較して、オープンウエイトモデルを公開することによって所定のリスクがどの程度増減するかという観点から評価されるべきであるというハイレベルなコンセンサスが生まれている。 |
Section 3 – Risk management: What techniques are there for managing risks from general-purpose AI? |
第3節 リスクマネジメント:汎用AIのリスクマネジメントにはどのような手法があるのか? |
Several technical approaches can help manage risks, but in many cases the best available approaches still have highly significant limitations and no quantitative risk estimation or guarantees that are available in other safety-critical domains. |
いくつかの技術的アプローチはリスクマネジメントに役立つが、多くの場合、利用可能な最善のアプローチにはまだ非常に大きな限界があり、他のセーフティ・クリティカルな領域で利用可能な定量的なリスク評価や保証はない。 |
Risk management – identifying and assessing risks, and then mitigating and monitoring them – is difficult in the context of general-purpose AI. Although risk management has also been highly challenging in many other domains, there are some features of general-purpose AI that appear to create distinctive difficulties. |
リスクの特定とアセスメント、そして緩和とモニタリングといったリスクマネジメントは、汎用AIの文脈では難しい。リスクマネジメントは他の多くの領域でも非常に難しいが、汎用AIには独特の難しさを生み出す特徴がある。 |
Several technical features of general-purpose AI make risk management in this domain particularly difficult. They include, among others: |
汎用AIのいくつかの技術的特徴が、この分野のリスクマネジメントを特に難しくしている。それらには特に以下のようなものがある: |
● The range of possible uses and use contexts for general-purpose AI systems is unusually broad. For example, the same system may be used to provide medical advice, analyse computer code for vulnerabilities, and generate photos. This increases the difficulty of comprehensively anticipating relevant use cases, identifying risks, or testing how systems will behave in relevant real-world circumstances. |
● 汎用AIシステムの可能な用途と使用コンテクストの範囲は、異常に広い。例えば、同じシステムを医療アドバイスに使ったり、コンピュータコードの脆弱性を分析したり、写真を生成したりすることもできる。このため、関連するユースケースを包括的に予測したり、リスクを特定したり、関連する実世界の状況でシステムがどのように振る舞うかをテストしたりすることが難しくなっている。 |
● Developers still understand little about how their general-purpose AI models operate. This lack of understanding makes it more difficult both to predict behavioural issues and to explain and resolve known issues once they are observed. Understanding remains elusive mainly because general-purpose AI models are not programmed in the traditional sense. |
● 開発者たちは、汎用のAIモデルがどのように動作するかについて、まだほとんど理解していない。この理解不足は、行動上の問題を予測することも、既知の問題が観察された後にそれを説明し解決することも難しくしている。主に、汎用AIモデルは伝統的な意味でプログラムされていないため、理解はつかみにくいままだ。 |
Instead, they are trained: AI developers set up a training process that involves a large volume of data, and the outcome of that training process is the general-purpose AI model. The inner workings of these models are largely inscrutable, including to the model developers. Model explanation and ‘interpretability’ techniques can improve researchers’ and developers’ understanding of how general-purpose AI models operate, but, despite recent progress, this research remains nascent. |
その代わり、AIは訓練される:AI開発者は、大量のデータを含むトレーニングプロセスを設定し、そのトレーニングプロセスの結果が汎用AIモデルである。これらのモデルの内部構造は、モデル開発者を含め、ほとんど不可解である。モデルの説明と「解釈可能性」技術は、汎用AIモデルがどのように動作するかについての研究者や開発者の理解を改善することができるが、最近の進歩にもかかわらず、この研究はまだ始まったばかりである。 |
● Increasingly capable AI agents – general-purpose AI systems that can autonomously act, plan, and delegate to achieve goals – will likely present new, significant challenges for risk management. AI agents typically work towards goals autonomously by using general software such as web browsers and programming tools. Currently, most are not yet reliable enough for widespread use, but companies are making large efforts to build more capable and reliable AI agents and have made progress in recent months. AI agents will likely become increasingly useful, but may also exacerbate a number of the risks discussed in this report and introduce additional difficulties for risk management. Examples of such potential new challenges include the possibility that users might not always know what their own AI agents are doing, the potential for AI agents to operate outside of anyone’s control, the potential for attackers to ‘hijack’ agents, and the potential for AI-to-AI interactions to create complex new risks. Approaches for managing risks associated with agents are only beginning to be developed. |
● AIエージェント(目標達成のために自律的に行動し、計画し、委任することができる汎用AIシステム)の能力が向上すれば、リスクマネジメントに新たな重大な課題をもたらす可能性が高い。AIエージェントは通常、ウェブ・ブラウザやプログラミング・ツールなどの一般的なソフトウェアを使用することで、自律的に目標に向かって行動する。現在のところ、そのほとんどはまだ広く使用できるほど信頼できるものではないが、企業はより有能で信頼性の高いAIエージェントを構築するために大きな努力を払っており、ここ数カ月で進歩を遂げている。AIエージェントは今後ますます便利になっていくだろうが、本報告書で取り上げた多くのリスクを悪化させ、リスクマネジメントに新たな困難をもたらす可能性もある。そのような潜在的な新たな課題の例としては、ユーザーが自身のAIエージェントが何をしているのか常に把握しているとは限らない可能性、AIエージェントが誰のコントロールも及ばないところで動作する可能性、攻撃者がエージェントを「ハイジャック」する可能性、AI同士の相互作用が複雑な新たなリスクを生み出す可能性などが挙げられる。エージェントに関連するリスクをマネジメントするアプローチは、まだ開発され始めたばかりである。 |
Besides technical factors, several economic, political, and other societal factors make risk management in the field of general-purpose AI particularly difficult. |
技術的要因に加え、経済的、政治的、その他の社会的要因も、汎用AIの分野におけるリスクマネジメントをとりわけ難しくしている。 |
● The pace of advancement in general-purpose AI creates an 'evidence dilemma' for decision-makers.[2] Rapid capability advancement makes it possible for some risks to emerge in leaps; for example, the risk of academic cheating using general-purpose AI shifted from negligible to widespread within a year. The more quickly a risk emerges, the more difficult it is to manage the risk reactively and the more valuable preparation becomes. However, so long as evidence for a risk remains incomplete, decision-makers also cannot know for sure whether the risk will emerge or perhaps even has already emerged. This creates a trade-off: |
● 汎用AIの進歩の速さは、意思決定者に「証拠のジレンマ」をもたらす。[2]例えば、汎用AIを使った学歴詐称のリスクは、1年以内に無視できるものから広まるものへと変化した。リスクが急速に顕在化すればするほど、そのリスクを反応的にマネジメントすることは難しくなり、準備の価値は高まる。しかし、リスクの証拠が不完全なままである限り、意思決定者はリスクが顕在化するかどうか、あるいはおそらくすでに顕在化しているかどうかさえも確実に知ることはできない。これはトレードオフの関係にある: |
implementing pre-emptive or early mitigation measures might prove unnecessary, but waiting for conclusive evidence could leave society vulnerable to risks that emerge rapidly. Companies and governments are developing early warning systems and risk management frameworks that may reduce this dilemma. Some of these trigger specific mitigation measures when there is new evidence of risks, while others require developers to provide evidence of safety before releasing a new model. |
しかし、決定的な証拠を待つことは、急速に顕在化するリスクに対する脆弱性を社会に残すことになりかねない。企業や政府( )は、このジレンマを軽減する可能性のある早期警告システムやリスクマネジメント枠組みを開発している。これらの中には、リスクに関する新たな証拠が発見された場合に特定の緩和措置を発動するものもあれば、新モデルをリリースする前に安全性の証拠を提供するよう開発者に求めるものもある。 |
● There is an information gap between what AI companies know about their AI systems and what governments and non-industry researchers know. Companies often share only limited information about their general-purpose AI systems, especially in the period before they are widely released. Companies cite a mixture of commercial concerns and safety concerns as reasons to limit information sharing. However, this information gap also makes it more challenging for other actors to participate effectively in risk management, especially for emerging risks. |
● AI企業が自社のAIシステムについて知っていることと、政府や非産業研究者が知っていることの間には、情報格差がある。企業は汎用AIシステムについて、特に広くリリースされる前の時期には、限られた情報しか共有しないことが多い。企業は、情報共有を制限する理由として、商業的な懸念と安全上の懸念が混在していることを挙げている。しかし、このような情報格差は、他のアクターがリスクマネジメントに効果的に参加すること、特に新たなリスクについて参加することを難しくしている。 |
● Both AI companies and governments often face strong competitive pressure, which may lead them to deprioritise risk management. In some circumstances, competitive pressure may incentivise companies to invest less time or other resources into risk management than they otherwise would. Similarly, governments may invest less in policies to support risk management in cases where they perceive trade-offs between international competition and risk reduction. |
● AI企業も政府も、しばしば強い競争圧力に直面し、リスクマネジメントを軽視するようになるかもしれない。状況によっては、競争圧力は、企業がリスクマネジメントに投資する時間やその他のリソースを、そうでない場合よりも少なくする動機付けになるかもしれない。同様に、政府は、国際競争とリスク削減との間にトレードオフがあると認識する場合には、リスクマネジメントを支援する政策への投資を少なくする可能性がある。 |
Nonetheless, there are various techniques and frameworks for managing risks from general-purpose AI that companies can employ and regulators can require. These include methods for identifying and assessing risks, as well as methods for mitigating and monitoring them. |
とはいえ、汎用AIによるリスクマネジメントには、企業が採用し、規制当局が求めることのできる様々な手法や枠組みがある。これには、リスクを特定・アセスメントする手法や、リスクを緩和・監視する手法が含まれる。 |
● Assessing general-purpose AI systems for risks is an integral part of risk management, but existing risk assessments are severely limited. Existing evaluations of general-purpose AI risk mainly rely on ‘spot checks’, i.e. testing the behaviour of a general-purpose AI in a set of specific situations. This can help surface potential hazards before deploying a model. However, existing tests often miss hazards and overestimate or underestimate general-purpose AI capabilities and risks, because test conditions differ from the real world. |
● 汎用AIシステムのリスクアセスメントはリスクマネジメントの不可欠な要素であるが、既存のリスクアセスメントは極めて限定的である。既存の汎用AIのリスク評価は、主に「抜き打ち検査」、つまり特定の状況における汎用AIの挙動テストに頼っている。これは、モデルを展開する前に潜在的な危険を表面化させるのに役立つ。しかし、既存のテストでは、テスト条件が現実世界と異なるため、ハザードを見逃したり、汎用AIの能力やリスクを過大評価したり過小評価したりすることが多い。 |
● For risk identification and assessment to be effective, evaluators need substantial expertise, resources, and sufficient access to relevant information. Rigorous risk assessment in the context of general-purpose AI requires combining multiple evaluation approaches. These range from technical analyses of the models and systems themselves to evaluations of possible risks from certain use patterns. Evaluators need substantial expertise to conduct such evaluations correctly. For comprehensive risk assessments, they often also need more time, more direct access to the models and their training data, and more information about the technical methodologies used than the companies developing general-purpose AI typically provide. |
● リスクの特定とアセスメントを効果的に行うためには、評価者は相当な専門知識、リソース、関連情報への十分なアクセスを必要とする。汎用AIの文脈における厳密なリスクアセスメントには、複数の評価アプローチを組み合わせる必要がある。これらは、モデルやシステム自体の技術的分析から、特定の使用パターンから起こりうるリスクの評価まで多岐にわたる。評価者は、このような評価を正しく行うために相当な専門知識を必要とする。包括的なリスクアセスメントを行うためには、汎用AIの開発企業が通常提供するよりも多くの時間、モデルやその学習データへの直接アクセス、使用されている技術的方法論に関する多くの情報も必要となることが多い。 |
● There has been progress in training general-purpose AI models to function more safely, but no current method can reliably prevent even overtly unsafe outputs. For example, a technique called ‘adversarial training’ involves deliberately exposing AI models to examples designed to make them fail or misbehave during training, aiming to build resistance to such cases. However, adversaries can still find new ways ('attacks') to circumvent these safeguards with low to moderate effort. In addition, recent evidence suggests that current training methods – which rely heavily on imperfect human feedback – may inadvertently incentivise models to mislead humans on difficult questions by making errors harder to spot. Improving the quantity and quality of this feedback is an avenue for progress, though nascent training techniques using AI to detect misleading behaviour also show promise. |
● 汎用のAIモデルをより安全に機能させるためのトレーニングは進歩しているが、現在の手法では、あからさまに安全でない出力さえも確実に防ぐことはできない。例えば、「敵対的トレーニング」と呼ばれる手法では、トレーニング中にAIモデルをわざと失敗させたり誤動作させたりするようなサンプルにさらすことで、そのようなケースに対する耐性を構築することを目的としている。しかし、敵対者は、これらのセーフガードを回避する新しい方法(「攻撃」)を、低~中程度の労力で見つけることができる。加えて、不完全な人間のフィードバックに大きく依存している現在のトレーニング方法は、エラーを発見しにくくすることで、難しい問題で人間を惑わすようなインセンティブをモデルに不用意に与えている可能性があることを、最近の証拠が示唆している。このようなフィードバックの量と質を改善することは、進歩の道であるが、誤解を招く行動を検知するためにAIを使用する新しいトレーニング技術も有望である。 |
● Monitoring – identifying risks and evaluating performance once a model is already in use – and various interventions to prevent harmful actions can improve the safety of a general-purpose AI after it is deployed to users. Current tools can detect AI-generated content, track system performance, and identify potentially harmful inputs/outputs, though moderately skilled users can often circumvent these safeguards. Several layers of defence that combine technical monitoring and intervention capabilities with human oversight improve safety but can introduce costs and delays. In the future, hardware-enabled mechanisms could help customers and regulators to monitor general-purpose AI systems more effectively during deployment and potentially help verify agreements across borders, but reliable mechanisms of this kind do not yet exist. |
● モニタリング(モデルがすでに使用された後のリスクの特定と性能評価)、および有害な行動を防止するための様々な介入は、汎用AIがユーザーに展開された後の安全性を向上させることができる。生成的なツールは、AIが生成したコンテンツを検知し、システムのパフォーマンスを追跡し、潜在的に有害な入出力を特定することができるが、熟練したユーザーであれば、これらのセーフガードを回避できることも多い。技術的な監視・介入機能と人間による監視を組み合わせた何層もの防御は、安全性を向上させるが、コストと遅延をもたらす可能性がある。将来的には、ハードウェアに対応したメカニズムが、顧客や規制当局が展開中の汎用AIシステムをより効果的に監視するのに役立ち、国境を越えた合意を検証するのに役立つ可能性があるが、この種の信頼できるメカニズムはまだ存在しない。 |
● Multiple methods exist across the AI lifecycle to safeguard privacy. These include removing sensitive information from training data, model training approaches that control how much information is learned from data (such as ‘differential privacy’ approaches), and techniques for using AI with sensitive data that make it hard to recover the data (such as ‘confidential computing’ and other privacy-enhancing technologies). Many privacy-enhancing methods from other research fields are not yet applicable to general-purpose AI systems due to the computational requirements of AI systems. In recent months, privacy protection methods have expanded to address AI's growing use in sensitive domains including smartphone assistants, AI agents, always-listening voice assistants, and use in healthcare or legal practice. |
● AIのライフサイクルには、プライバシーを保護するための複数の方法が存在する。これには、学習データから機密情報を除去する方法、データから学習する情報量を制御するモデル・トレーニングの方法(「差分プライバシー」アプローチなど)、データの復元を困難にする機密データをAIで使用する技術(「機密コンピューティング」やその他のプライバシー強化技術など)などがある。他の研究分野のプライバシー向上手法の多くは、AIシステムの計算要件のため、汎用AIシステムにはまだ適用できない。ここ数カ月で、プライバシー保護手法は、スマートフォンアシスタント、AIエージェント、常時聞き手の音声アシスタント、医療や法律実務での使用など、AIがセンシティブな領域で使用されるようになっていることに対応するために拡大している。 |
Since the publication of the Interim Report, researchers have made some further progress towards being able to explain why a general-purpose AI model has produced a given output. Being able to explain AI decisions could help manage risks from malfunctions ranging from bias and factual inaccuracy to loss of control. In addition, there have been growing efforts to standardise assessment and mitigation approaches around the world. |
中間報告書の発表以来、研究者たちは、汎用AIモデルがなぜある出力を出したのかを説明できるようになるために、さらなる進歩を遂げてきた。AIの判断を説明できるようになれば、バイアスや事実誤認から制御不能に至るまで、誤作動によるリスクマネジメントに役立つ可能性がある。さらに、世界中でアセスメントと緩和のアプローチを標準化する取り組みが活発化している。 |
Conclusion: A wide range of trajectories for the future of general-purpose AI are possible, and much will depend on how societies and governments act |
結論:汎用AIの未来にはさまざまな軌跡が考えられるが、その多くは社会や政府がどのように行動するかにかかっている。 |
The future of general-purpose AI is uncertain, with a wide range of trajectories appearing possible even in the near future, including both very positive and very negative outcomes. But nothing about the future of general-purpose AI is inevitable. How general-purpose AI gets developed and by whom, which problems it gets designed to solve, whether societies will be able to reap general-purpose AI’s full economic potential, who benefits from it, the types of risks we expose ourselves to, and how much we invest into research to manage risks – these and many other questions depend on the choices that societies and governments make today and in the future to shape the development of general-purpose AI. |
汎用AIの未来は不確実であり、非常にポジティブな結果も非常にネガティブな結果も含め、近い将来にも幅広い軌跡があり得ると思われる。しかし、汎用AIの未来に必然性はない。汎用AIが誰によってどのように開発されるのか、どのような問題を解決するために設計されるのか、社会は汎用AIの経済的可能性をフルに享受できるのか、誰がその恩恵を受けるのか、私たちはどのようなリスクにさらされるのか、リスクを管理するための研究にどの程度投資するのか--こうした疑問や他の多くの疑問は、汎用AIの開発を形成するために社会や政府が今日および将来行う選択にかかっている。 |
To help facilitate constructive discussion about these decisions, this report provides an overview of the current state of scientific research and discussion on managing the risks of general-purpose AI. |
こうした決定に関する建設的な議論を促進するため、本報告書では、汎用AIのリスクマネジメントに関する科学的研究と議論の現状を概観する。 |
The stakes are high. We look forward to continuing this effort. |
賭け金は高い。私たちはこの努力を続けることを楽しみにしている。 |
Recent Comments